Search

Google


Benefits

Benefits

Comparisons between row-oriented and column-oriented systems are typically concerned with the efficiency of hard-disk access for a given workload, as seek time time is incredibly slow compared to the other delays in computers. Further, because seek time is improving at a slow rate relative to cpu power (see Moore's Law), this focus will likely continue on systems reliant on hard-disks for storage. Following is a set of over-simplified observations which attempt to paint a picture of the trade-offs between column and row oriented organizations.

1. column-oriented systems are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
2. column-oriented systems are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
3. row-oriented systems are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
4. row-oriented systems are more efficient when writing a new row if all of the column data is supplied at the same time, as the entire row can be written with a single disk seek.

In practice, row oriented architectures are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column stores are well-suited for OLAP-like workloads (eg. data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).